
Firmware Biopsy

tweek <tweek@google.com>
Enterprise Infrastructure Protection

Agenda

● Context
● Read Primitives
● More Read Primitives
● Collection at Scale
● Findings
● Q & A

Context

x86 in 2016 (Skylake)

CPU

PCH

DDR SDRAM

SMBus

DMI

GPU
PEG

DDR SDRAM

x86 in 2016 (Skylake)

CPU

PCH

System
Flash

DDR SDRAM

SMBus

DMI

GPU

SPI

PEG

DDR SDRAM

x86 in 2016 (Skylake)

CPU

PCH

System
Flash

Embedded
Controller

DDR SDRAM

SMBus

DMI

GPU

SPI

SMBUS

SPI

PEG

DDR SDRAM

x86 in 2016 (Skylake)

CPU

PCH

System
Flash

Embedded
Controller

DDR SDRAM

SMBus

DMI

EC
Flash

GPU

SPI

SMBUS

SPI SPI

PEG

DDR SDRAM

x86 in 2016 (Skylake)

CPU

PCH

System
Flash

Embedded
Controller

DDR SDRAM

SMBus

DMI

EC
Flash

GPU

SPI

SMBUS

SPI SPI

PEG

SSD

SSD
Flash

SPI

DDR SDRAM

SATA/PCIe

x86 in 2016 (Skylake)

CPU

PCH

System
Flash

Embedded
Controller

DDR SDRAM

SMBus

DMI

EC
Flash

GPU

SPI

SMBUS

SPI SPI

PEG

Thunderbolt
Controller

(w EEPROM)

USB-C
Switch

Controller

USB-C
Controller

Flash

SSD

SSD
Flash

SPI

DDR SDRAM

SATA/PCIe

Firmware on Pixel 2

Firmware on Pixel 2

CPU MC

BIOS/ME

TPM

SILEGO

EC PD

SSD

BATTERY FUEL
GAUGE

AUDIO
CODEC

AUDIO DSP
GPU

EC

SD CARD

WIFI/BT

Research

Firmware / Topic Published Research

PCI Option ROM Heasman (2007)
Snare (2013)
Kovah & LegbaCore (2015)

Hard Drive Goodspeed et al. (2013)

Network Controller Triulzi (2008)

x86 Modes and Design flaws Rutkowska (2009-2015)
Cr4sh SMM research (2015-2016)

What is happening in the wild?

● State-sponsored attackers exploiting firmware implants
○ Equation Group, IRATEMONK, DEITYBOUNCE

● Non-state-sponsored attackers picking up
○ Hacking Team

Why is this attractive to attackers?

● High initial investment, but lasts for a long time
● Very low chance of detection
● Remote deployment or hardware interception is still easy

What do defenders want?

Increase costs of performing firmware attacks

● Removing trivial to find security flaws
● Increasing chance of detection in the wild
● Reduce length of time you can expect capability will last

before being disclosed

Ultimately, protecting our users and their data.

Improving the state of
detection

Increase knowledge & visibility

● Where is firmware running?
● What firmware is running?
● Is that the firmware intended to be run by the vendor?
● Does this firmware contains known vulnerability?

How to verify that a fleet of
devices is running the original

vendor firmware?

Read Primitives

Read Primitive

● Method to extract a copy of the running firmware
○ Reliable
○ Generic
○ Complete

● Physical vs Software
○ Trade-off between integrity and scalability of measurement
○ Physical: hook onto pins = easiest, not practical for internal flash

● Limited read primitive
○ Hash of firmware
○ Partial copy

Read Primitive (cont’d)

● Detection method more than prevention
● PCR of TPM

○ Similar objective
○ Partial measure of boot environment
○ Limited to boot path
○ Preventative method

Software Read Primitive Flaw

Kernel

Userspace

Firmware

Measuring thisHardware

Software Read Primitive Flaw

Kernel

Userspace

Firmware

Measuring this

From here

Hardware

One solution

● Similar flaw in today live forensic
○ Investigate the OS from the running kernel

● Increase the number and type of measures
○ For a specific firmware => have two or more read primitives
○ Increase the cost of hiding for an attacker

BIOS/UEFI Read
Primitives

● The most well-known firmware
● Stored on the SPI flash

● Descriptor defines access control between regions
● All latest chipset generation follow a specific Intel standard

for their format

BIOS/UEFI

Descriptor BIOS Image
Management
Engine (ME)

Image

Ethernet
Controller
Firmware

SPI Flash

8-PIN WSON
Debug Header

8-PIN SOP

Hardware Acquisition

BIOS/UEFI Read Primitive (SPIBAR)

● PCI device exposed by the PCH
● Interact with the flash using memory access
● Used by Flashrom and Chipsec
● Multiple modes

○ Software sequencing:
Deprecated, forward white-listed operations to the flash

○ Hardware sequencing:
PCH offers standard “API” to interact with flash

BIOS/UEFI Read Primitive (SPIBAR)

[1]

Memory-mapped I/O

[2]

/dev/mem

● CONFIG_STRICT_DEVMEM ?
● Access to MMIO for uid 0 is allowed
● OSX and Windows requires extra driver for such access

SPIBAR example

SPIBAR example

SPIBAR is at: 0xfed1c000 + 0x3800 (constant) = 0xfed1f800

SPIBAR example

SPIBAR example

SPIBAR example
Where? (0x00533e63)

SPIBAR example
Where? (0x00533e63)

How much? [1-64]

SPIBAR example
Where? (0x00533e63)

How much? [1-64]
What? (r/w) + Go!

SPIBAR example
Where? (0x00533e63)

How much? [1-64]
What? (r/w) + Go!

Content of the Flash

BIOS/UEFI Read Primitive (0xFF000000)

● 16MB forwarded to the PCH
● “For security reasons, the processor will positively decode

this range to DMI. This positive decode ensures any
overlapping ranges will be ignored. This ensures that the
boot vector and BIOS execute off the PCH.” - Intel Skylake
datasheet

PCH caching?

More Read Primitives

PCI Option ROM

● Stored on the PCI device
● Executed by CPU when the device is initialised
● By design, execution of unknown code
● Leveraged by Thunderstrike

GPU Read Primitives

● Multiple memory areas
○ VRAM
○ PCI Option ROM
○ GPU firmware

● Documentation from Nouveau project
○ Describes low-level interface of cards
○ Highly dependent on card generation

Embedded Controller

● Manage battery, fans, sensors
● No standard interface

○ ACPI define two IO port
○ Index I/O for extra reads

● Moving proprietary tech from BIOS to EC
○ Lenovo’s ThinkEngine
○ Apple’s SMC

● Chrome OS
○ Open Source EC
○ Read primitive available using flashrom (in dev mode)

Collection at Scale

Chipsec

● From Intel Advanced Threat research, published in 2014
● https://github.com/chipsec/chipsec
● Allow inspection of hardware/firmware
● By default, requires kernel driver
● /dev/mem is enough for PCI memory access
● Port to OSX for similar functionalities

https://github.com/chipsec/chipsec
https://github.com/chipsec/chipsec

GRR

● Google’s IR tool
● Open Source, https://github.com/google/grr
● Highly customizable

○ Integrate Sleuthkit for live disk forensic
○ Integrate Rekall for memory forensic

● Stable
● Design for low-impact (memory footprint) on client

https://github.com/google/grr

GRR Chipsec

● Integrate Chipsec to GRR
● Open Source since April
● Implemented as a GRR component
● Able to dump the SPI flash image
● Able to inspect hardware/firmware status

○ Quickly extend the functionality in case of incident or public release

GRR Chipsec - BIOS collection

GRR Chipsec - BIOS collection

Execution Time (s)

cl

ie
nt

s

What can go wrong?

● Unsupported platform
○ Older generation only supports software sequencing
○ Unsupported hardware by Chipsec
○ Execution on a VM

● Lack of space to ...
○ Load Chipsec
○ Dump the flash image

Analysis

Comparison

● With what?
○ Previous versions from the same host
○ Official version
○ Other machine with the same BIOS version
○ Different read primitives

Granularity

● Considering one blob and hash
○ Lots of noise
○ E.g., BIOS contains variable areas, all flash images will be different

● Deconstructing the blob
○ Vendor specific format
○ Extra care to consider “in-between” regions
○ Some regions will still be out of analysis
○ May need to run control flow analysis to uncover similar code

Implementation

● Leverage existing parsing code
○ UEFI: UEFITools, uefi-firmware-parser
○ ME: me-tools, unhuffme

● Separate server to receive collected images and compare
with official versions

● Using manually rules to match / ignore false positives, per
vendor/BIOS version

Findings

Unexpected Flash Descriptor content

● Descriptor has access control info for each regions
● When running in OS, CPU should only be able to read certain

regions

● Found some flashes with full access to other regions

Descriptor BIOS Image
Management
Engine (ME)

Image

Ethernet
Controller
Firmware

Unexpected Management Engine images

● While collecting and analysing BIOS:
○ Able to dump the ME part of the flash image
○ While the flash descriptor explicitly forbid such operation ??

● ME is usually not readable (Mac excepted)
● Similar machines (manufacturer, BIOS version) did not

expose such behaviour

SPI FDOPSS

● Pin strap on the PCH
● If (de)asserted, override flash protection
● Some vendors allow overwrite of this bit using a jumper
● Some vendors connect this pin to the Embedded Controller

SPI FDOPSS

[1]

SPI FDOPSS

● Use Chipsec module of GRR to verify if that bit is set
● 4 lines of Python (hack) to read a specific hardware register
● Can also be implemented as a Chipsec module:

○ chipsec/modules/common/spi_fdopss.py

https://github.com/chipsec/chipsec/blob/master/source/tool/chipsec/modules/common/spi_fdopss.py
https://github.com/chipsec/chipsec/blob/master/source/tool/chipsec/modules/common/spi_fdopss.py

SPI FDOPSS

Conclusion

● Context shows firmware attacks are to be considered
● Bring some visibility to the x86 platform
● First tooling for enterprise-wide hunting

Huge thanks to the team: Ben, Darren, Jan, Parth and Mario.

Thank you!

References

1. Intel 9 Series Chipset Family Platform Controller Hub (PCH)
datasheet

2. Diagram by Michael Cohen

